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Magnetic field induced phase transitions in YBa2Cu4O8
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Abstract. The c-axis resistivity measurements in YBa2Cu4O8 from Hussey et al. for magnetic field orien-
tations along the c-axis as well as within the ab-plane are analyzed and interpreted using the scaling theory
for static and dynamic classical critical phenomena. We identify a superconductor to normal conductor
transition for both field orientations as well as a normal conductor to insulator transition at a critical field
Hc ‖ a with dynamical critical exponent z = 1, leading to a multicritical point where superconducting,
normal conducting and insulating phases coexist.

PACS. 74.25.Dw Superconductivity phase diagrams – 74.25.Fy Transport properties (electric and thermal
conductivity, thermoelectric effects, etc.)

Recently it has been demonstrated, that the doping tuned
superconductor to insulator (SI) transition in cuprates can
be understood in terms of quantum critical phenomena
in two dimensions [1,2]. Zero temperature magnetic field
driven SI transitions have also been observed in ultra-
thin Bi films, and successfully interpreted in terms of the
scaling theory of quantum critical phenomena [3]. Never-
theless, three important questions concerning the physics
of insulating and superconducting cuprates remain open.
One is the nature and dimensionality of the normal state
revealed when superconductivity is suppressed by a mag-
netic field [4–7] and the second is the role of disorder. The
third issue concerns the dynamical universality classes of
SI and superconductor to normal state (SN) transitions at
finite temperatures.

We address these three issues through an analysis and
interpretation of recent out-of-plane resistivity measure-
ments ρc of YBa2Cu4O8 in magnetic fields by Hussey et al.
[7], using the scaling theory of static and dynamic clas-
sical critical phenomena. Since this material is stoichio-
metric and, therefore, can be synthesized with negligible
disorder, we consider the pure case. As shown below, the
experimental data for ρc(T,H ‖ c) are consistent with
a magnetic field tuned SN transition, while the data for
ρc(T,H ‖ a) provide strong evidence for a multicritical
point at the critical field, Hcr ‖ (a, b), where the supercon-
ducting, normal conducting and insulating phases coexist.
Moreover, from the existence of a critical resistivity, ρc,cr
for H ‖ a, where the magnetic field tuned multicritical
point occurs, we derive its dynamical universality class,
z = 1, uniquely. For general magnetic field orientations,
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we predict a line of multicritical points provided that the
critical resistivity ρc,cr is attainable.

The appropriate approach to uncover the phase di-
agram from conductivity measurements is the scaling
theory of classical dynamic critical phenomena [8]. We now
sketch the essential predictions of this theory in terms of a
dimensional analysis. A defining characteristic of a super-
conductor is its broken U(1) or gauge symmetry, which
is reflected in the order parameter Ψ . Gauge invariance
then implies the following identification for the gradient
operator

i∇Ψ −→ i∇Ψ +
2π

Φ0
A. (1)

The basic scaling argument, which amounts to a dimen-
sional analysis, states that the two terms on the right hand
side must have the same scaling dimension, (Length)−1 ≡
L−1. The dimensionality of the magnetic and electric field
are then expressed as

H = ∇×A ∝ L−2, E = −
1

c

∂A

∂t
∝ (Lt)−1. (2)

In a superconductor the order parameter Ψ is a complex
scalar,

Ψ = Re(Ψ) + iIm(Ψ),

corresponding to a vector with two components. Con-
sequently, the dimensionality of the order parameter is
n = 2. Based upon the dimensional statement

ξ = ξ±0 |ε|
−ν ∝ L, ε =

T − Tc
Tc

, (3)
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Fig. 1. T -H-phase diagram for Y-124, H ‖ c. The data points
Tc vs. Hc have been deduced from [7]. The solid curve corre-
sponds to the limiting behavior given by equation (15).

where ± = sign(ε), we obtain in D dimensions for the free
energy density the scaling form

f = F/(V kBT ) ∝ L−D ∝ (ξ±)−D, (4)

and for H 6= 0

f = (ξ±)−DG(Z), Z =
H(ξ±)2

Φ0
, (5)

due to equation (2). G is an universal scaling function of
its argument Z. An extension to 3D anisotropic materials,
such as cuprates, is straightforward [9]:

f =
(
ξ±x ξ

±
y ξ
±
z

)−1
G(Z), (6)

where the indices x, y, z denote the corresponding crystal-
lographic b, a, c-axes of the cuprates, and

H = H(0, sin δ, cos δ) :

Z =
(ξ±x )2

Φ0

√(
ξz

ξx

)2

H2
y +

(
ξy

ξx

)2

H2
z ,

H = H(cosφ, sinφ, 0):

Z =
(ξ±z )2

Φ0

√(
ξy

ξz

)2

H2
x +

(
ξx

ξz

)2

H2
y . (7)

Using this scaling form of the free energy density magneti-
zation [10,11] and magnetic torque data [9,12] have been
successfully analyzed.

Of particular interest in the present context is the con-
ductivity σ. From the dimension of the current,

J =
1

c

∂f

∂A
∝ L−D+1, (8)

and the electric field (see Eq. (2)), we obtain for the elec-
tric conductivity

σ =
J

E
∝ tL2−D ∝ ξ2−D+z, t ∝ ξz, (9)

Fig. 2. ρc(T ) curves for various fields H ‖ a, taken from [7].

since the scaling dimension of time is fixed by

t ∝ Lz ∝ ξz.

The relaxation time τ describes the rate at which the sys-
tem relaxes to equilibrium. τ diverges at the transition
and the dynamic critical exponent z is defined as

τ ∝ ξτ ∝ ξ
z ∝ |ε|−zν .

For H 6= 0 the scaling expression for the conductivity
reads as

σ(T,H) = ξ2−D+zG(Z), Z =
H(ξ±)2

Φ0
· (10)

Supposing then that there is a critical point at Z = Zc
with

2−D + z = 0, (11)

the curves σ versus H recorded at different temperatures
T will cross at H = Hc, where Z = Zc. The extension to
anisotropic systems reads as

σii =
ξiξτ

ξjξk
G(Z), (12)

with (i, j, k) ≡ (x, y, z) and Z given by equation (7).
We are now prepared to analyze the resistivity data

of Hussey et al. [7]. At H = 0, the material is supposed
to undergo a continuous SN transition belonging to the
3D-XY universality class, and accordingly

ξx,y,z = ξ0,x,y,z|ε|
−ν , ξτ ∝ |ε|

−zν , ν ≈ 2/3. (13)

If the transition occurs in finite fields, then Z = Zc, and
close to Tc = Tc(H = 0) the phase transition line is given
by

Hc,i =
ZcΦ0

ξ0,jξ0,k
|ε|2ν , (i, j, k) ≡ (x, y, z). (14)
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Fig. 3. ρc versus H, H ‖ a for various temperatures, taken
from [7].

From Figure 1 it is seen that the resulting behavior for
Hc,z (i.e. H ‖ c), namely

Tc(H) = Tc(H = 0)
(

1− 0.078H3/4
)
, (15)

agrees remarkably well with the experimental data. Simi-
larly, for Hc,y (H ‖ a) we obtain the estimate (using the
two points Tc(H = 0) = 80 K, Tc(H = 35 T) = 65 K mea-
sured by [7])

Tc(H) ≈ Tc(H = 0)
(

1− 0.013H3/4
)
, (16)

which has been included in the phase diagram shown
in Figure 4. Combining equations (14–16), we obtain for
the yz-anisotropy of the correlation lengths the estimate

ξy

ξz
≈

(
0.078

0.013

)4/3

≈ 11, (17)

which is close to the value obtained from magnetic torque
measurements [13].

According to Figures 2 and 3, showing ρc vs. tempera-
ture for various fields (H ‖ a) as well as ρc vs. H (H ‖ a)
for various temperatures between 80 K and 200 K, the be-
havior of the c-axis resistivity for a field oriented along the
a-axis differs drastically from the (H ‖ c) data. Indeed, it
is seen that in the normal state Tc < T < 200 K for (H ‖ a)
a NI transition occurs. In particular, all ρc(H ‖ a) curves
go through a single crossing point (Fig. 3) at

Hcr ≈ 19 T, ρc,cr ≈ 8 mΩ cm,

which is the value where ρc(T ) becomes essentially tem-
perature independent (Fig. 2). Nevertheless, there is still
a transition into a superconducting regime beyond Hcr ≈
19 T for H ‖ a (e.g. Tc(35 T) = 65 K). One clearly observes
in Figure 2 that at low magnetic fields (H < Hcr ≈ 19 T),
as the temperature is reduced, ρc(T ) shows a drop from
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Fig. 4. Sketch of the T -H-phase diagram, Y-124, H ‖ a, de-
duced from the experimental data shown in Figures 2 and 3.
The solid line corresponds to equation (16). S: Superconductor;
I: Insulator; N: Normal conductor.

its normal state value ρc ≈ 8 mΩ cm. For H > Hcr ≈ 19 T
and T > Tc(H), ρc raises with decreasing temperature,
signalling the onset of insulating behavior. The result-
ing phase diagram, showing SN, SI and NI transitions as
well as a multicritical point, where the superconducting,
normal conducting and insulating phases can coexist, is
drawn in Figure 4. On physical grounds one expects that
the NI transition line will have a critical endpoint in the
normal state, too.

The existence of the crossing point (critical field) in
the bulk material (D = 3) (Fig. 3) implies according to
equation (11) that the dynamical critical exponent of the
NI transition is z = 1. As a consequence, the scaling form
of the conductivity (Eq. (12)) reduces for H ‖ (a, b) to

σzz =
ξz0ξτ0

ξx0ξy0
G(Zc) for z = 1, D = 3, (18)

where

Zc =
ξzξyHc

Φ0

√
cos2(φ) +

(
ξx

ξy

)2

sin2(φ). (19)

Thus, curves ρc vs. H (H ‖ a), recorded at different tem-
peratures T , exhibit a crossing point at H = Hcr, where
Z = Zc, in agreement with the experiment (Fig. 3). More-
over, if the data for H ‖ a, as shown in Figure 3, are
replotted according to

σzz = F
(
h/t2ν

)
, (20)

with h = |H −Hcr|/Hcr and t = |T − Tc(Hcr)|/Tc(Hcr),
they collapse, as shown in Figure 5, onto two branches
(using Tc(Hcr) ≈ 70.5 K, Hcr ≈ 19 T and ν ≈ 2/3).

Finally, close to the NI transition (Z = Zc) we obtain

σzz ≈ σzz(Zc) +
∂σzz

∂Z

∣∣∣∣
Z=Zc

(Z −Zc), (21)

where

Z −Zc = (H −Hcr)
ξzξy

Φ0

√
cos2 φ+

(
ξx

ξy

)2

sin2 φ. (22)



334 The European Physical Journal B

0 1 2 3
h/t

4/3

0.00

0.05

0.10

0.15

0.20

0.25

σ zz
 [(

m
Ω

cm
)−

1 ]

Fig. 5. σzz vs. h/t4/3 for the data shown in Figure 3. Upper
branch: H < Hcr; lower branch: H > Hcr.

Thus, provided that ξy 6= ξx, both, out-of-plane conduc-
tivity and resistivity will depend on the angle φ, so that
close to the multicritical point

∆ρzz =
1

σzz − σzz(Zc)
=

(
∂σzz

∂Z

∣∣∣∣
Z=Zc

(H −Hcr)

×
ξzξy

Φ0

√
cos2 φ+

(
ξx

ξy

)2

sin2 φ

)−1

. (23)

Figure 6 shows a fit of the Y-124 data to equation (23),
this expression describes the experimental data very well,
yielding ξx/ξy = 1.27, in fair agreement with a recent
experimental estimate ξx/ξy ≈ 1.6 [14].

The value of the conductivity at the multicritical point
(ρc,cr ≈ 8 mΩ cm, H ‖ a )

σzz(Zc) =
ξz0ξτ0

ξx0ξy0
G(Zc) ≈ 1/8 (mΩ cm)−1 (24)

puts a constraint for its occurrence for general magnetic
field orientations. In particular, for H ‖ (z = c), this value
was not attained in the experiments considered here. For
this reason there is no evidence for a NI-transition (see
Fig. 1). Nevertheless, as function of the angle δ a line
of multicritical points, associated with a surface of SI-
transitions, is expected to occur in the phase diagram
(H,T, δ) (see Fig. 4), as long as the constraint (24) is met
with δ decreasing from 90◦.

To summarize, we have shown that the magnetic field
and temperature dependence of the c-axis resistivity in
YBa2Cu4O8, recorded for various magnetic field orienta-
tions, can be understood in terms of the scaling theory
of static and dynamic classical critical phenomena. For
H ‖ c we identified a SN transition, while for H ‖ a
we identified a magnetic field tuned NI-transition with
the dynamical critical exponent z = 1, as well as a
multicritical point, where superconducting, normal con-
ducting and insulating phases can coexist. Moreover, for
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Fig. 6. Angular dependence of the c-axis resistance ρc recorded
at T = 85 K and field H = 15 T. The field is rotated in the
ab-plane. Experimental data (circles) are taken from [7], the
solid line is a fit to expression (23), yielding ξx/ξy = 1.27.

general magnetic field orientations, we predicted a line of
multicritical points provided that the critical resistivity
ρc,cr is attainable.

We benefitted from discussions with H. Keller, J. Hofer and
M. Willemin. Part of the work was supported by the Swiss
National Science Foundation.
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